A Unifying Framework for Concatenation Based Grammar
Formalisms

Annius V. Groenink
CWI, Kruidaan 413, 1098 SJ Amsterdam, The Netherlands
avg@cwi.nl

September 21, 1995

Abstract

Linear Context Free Rewriting Systems (LCFRS, [Wei88]) are a general class of trans-context-free grammar
systems; it is the largest well-known class of mildly context sensitive grammar; languagesrecognized by L CFRS
strictly include those generated by the HG, TAG, LIG, CCG family. (Parallel) Multiple Context-Free Grammar
(PMCFG, [KNSK92]) is a straightforward extension of LCFRS. Literal Movement Grammars, introduced by the
author of this paper in [Gro95c], are aform of CFG augmented with inherited string-valued attributes. LCFRS,
PMCFG and LMG are primarily aimed at the analysis of natural language. String Attributed Grammars are
the concatenative variant of the attribute grammar formalism, which is widely used in programming language
semantics. The properties of the class of attribute output languages OUT(SAG) are studied in [Eng86].

We present an attractive general purpose grammar formalism, concatenative predicate grammar, in which
all the mentioned formalisms can be represented. This results in both a more readable notation, and an elegant
hierarchical classification of the grammar formalisms.

1 Introduction

Literal Movement Grammars (LMG), introduced in [Gro95c¢], aim at the description of discontinuous constituency
and extrapositionin natural languages, while maintai ning some of the pleasant propertiesof context free grammars,
such as (polynomial) complexity of recognition, the applicability of Earley-based, left-to-right scanning parsing
strategies, and the fact that the appearance of an LMG is similar to that of a CFG. In [Gro95b] we show, by a
number of simple examples, that LMG isrelatively adequate w.r.t. other well-known context sensitive formalisms
(head grammar or tree adjoining grammar [V SW94], extraposition grammar [Per81]) in the trestment of languages
such as Dutch, whose surface structure is essentially more involved than that of English.

This paper putsLMG in afamiliar formal perspective by defining a notationa variant, concatenative predicate
grammarsor CPG, of thenoncombinatorial LMG asdefinedin [Gro95c]. Thisvariant emphasizesitsrelationshipto
more well-known formalisms such aslinear context-free rewriting systems (LCFRS, [Wei88]) and parallel multiple
context-free grammars (PMCFG, [KNSK92]). It turns out that CPG not only e egantly subsume the mentioned
formalisms, but also provide a simple characterization of the class of languages recognisable in deterministic
polynomia time. The latter isthe subject of a separate paper [Gro954].

After an introduction to LCFRS and LMG, we will define CPG and show how CPG is a generalization of
both formalisms. We then introduce string attributed grammar (SAG, [Eng86]) and show that it too fits into the
framework of CPG.

2 Paradigm one. Linear Context Free Rewriting Systems and Parallel
Multiple Context-Free Grammars
A linear context-free rewriting system (LCFRS, [Wei88]) isacontext-freegrammar inwhich each ruleisaugmented

with alinear, non-erasing function over tuples of termina words. Instead of deriving a single terminal string, an
LCFRS derives tuples of termina strings; an LCFRS derivation is a context free derivation where each node

is annotated with a function. The class of languages recognized by LCFRS is equal to that recognised by multi
component TAG (MCTAG), andisincludedin, but not equal totheclass PTIME of languagesthat can be recognised
in polynomial time [Wei88].

Definition 2.1 (LCFRS) A linear context-free rewriting system (LCFRS) isatuple (N, T, u, S, P) where N and
T are sets of nonterminal symbols and terminal symbols respectively, NN T = 0, S € N isthe start symbol,
w#: N — N isthesimilarity type that assigns an arity to each nonterminal, 1(S) = 1 and P isaset of productions
of theform

A — f(Bl,,Bm)

where m > 0, A, By,...,B, € N, and theyield function f is a linear, non-erasing function over tuples of
termina words, that is, f : ((T*)#(B1), ..., (T*)#(B=)) — (T*)*(4) can be defined symbolicaly as

f({z1,. ..,mi(Bl)>, oo (2T ..,:cZ‘(Bm)>) = (t1,.- -, tu(a))

wheret;. are strings over terminals and the variables z%, and each of the z} appears precisely onceinty, ..., t,(4).

Definition 2.2 (LCFRSderivation) An LCFRS G = (N, T, y, S, P) derives atermina word w € T* if § N
(w) where =% is defined inductively, as follows: if
A — f(Bl,,Bm)

isaproductionin P, then

G G m m
B; = (wi,. ..,wllt(Bl)> 0 B = (ul,...,wiip) CER
G m m
A= f((wi,.. .,wi(Bl)>, e {wl, 'va(Bm)»
Notethat the base case ism = 0 (the rulethen has 0 antecedents). Thelanguage recognized by an LCFRSiscalled
alinear context-free rewriting language (LCFRL).

Example 2.3 The following LCFRS generates the language a™b™c™.

S — e(4), e((zu2) = (zy2)
A — f(4), f{z,y,2)) = (az,by,cz)
A — g(), 900 = (AN

Remark 2.4 (Context Free Grammar) A CFGisan LCFRS, whoseyield functionsare limited to concatenation
over 1-tuples; acontext-freerule

A — By---B,
isrepresented as

A — concat™(B1,...,Bm), concat™({wi),...,{wm)) = (w1 Wn)
and aterminal rule

C — w

C — term™(), term™() = (w)

Example 2.5 (Copy Languages) By generating tuples containing multiple copies of the same string, we can
recogni ze k-copy languages over any context freelanguage £; e.g. to generate the 2-copy language {ww | w € L}
over a context-free language £, we replace the rules from the previous remark with

A — concatP(Bi,..., Bm),

concaty ((vi, w1)y ..y (Vm, Wm)) = (V1 Vm, W1- - W)
C — term¥(),
term¥ () = {w,w)

Since the resulting start symbol has arity 2, we need to wrap things up by adding a new start symbol 3 and the
following production:

Y — flatten,(S), Afatten,((wi,w2)) = (wiwz)

Remark 2.6 (Head Grammar) A bilinear head grammar is an LCFRS restricted to 2-tuples and three binary
functions;i.e. G = (N, T, u, S, P) where u(A) = 2 for S # A € N, and for each production 4 — f(Bi, Bz), f
isone of the functions wrap, concat 4 or concatg Where

wrap((vl,v2>, <w1,w2>) = <v1w1, U)21)2>
concatg({v1,v2), (wi,w2)) = (v1, vawiws)
concatp(({v1,v2), (w1, wz)) = (vivawi, wa)

It is shown in [VSW94] that this formal counterpart of Pollard’s head grammars [Pol84] is weakly equivaent to
TAG, LIG and CCG. It isworth notingthat thisis still one of the weakest thinkabl e subclasses of linear context-free
rewriting systems stronger than CFG; opinionsvary about the question whether such severely restricted formalisms
can be considered linguistically adequate. In [Gro95b] we argue that the TAG family is adequate for structural
descriptions of English but fails for any more than minimal fragment of structurally complex languages such as
Dutch and German.

Remark 2.7 (Constant Growth) Itiseasy to establish avery weak form of apumping lemma, the constant growth
property, for LCFRS [Wei88]: for every LCFRL L thereis an integer ¢ and a set of constants C such that for
each word w € £ whose length is greater than ¢, there is another word w’ € £ such that for one of the constants
ceC, || =w|l+e

Larger classes of grammars are obtained by relaxing the constraints of non-erasingness and linearity.

Definition 2.8 (MCFG, PMCFG) A multiplecontext-free grammar (MCFG) isasan LCFRS, but ayield function
f, defined as above:

f({z1,. ..,mi(Bl)>, oo (2T ..,:cZ‘(Bm)>) = (t1,.- -, tu(a))

isonly required to belinear: each of the :c; appears at most once in the sequence of termsty, ..., ¢, (4)-

A paralle multiple context-free grammar [KNSK92] is as an LCFRS, but there are no restrictions to the yield
functions.

A KNOWN result isthat for every MCFG, aweakly equivalent LCFRS can be constructed, hence LCFRL = MCFL.!
The same construction shows that a PMCFG can be made nonerasing. However, the following example of a
PMCFG that describes a non-constant growth language shows that PMCFG has a strictly larger weak generative
capacity than LCFRS and MCFG.

Example2.9 The following PMCFG recognizes the language a*” (note that f is not linear and hence thisis not
an LCFRYS):

S = f(S), f((=))
S — g()v g()

Proposition 2.10 (homomor phisms) LCFRL and PMCFL are closed under arbitrary homomorphism.

(zz)
{

a)

PROOF Entirely straightforward. We replace al terminals in the grammar by their homomorphic images; every
derivationin theresulting grammar correspondsto onein the original grammar, and viceversa. Theyield functions
are based on concatenation, and hence preserve homomorphic images.

L However, it is shown in [KNSK92] that the non-erasingness condition is relevant to the time complexity of the problem of universal
recognition.

3 Paradigm two. Literal Movement Grammar

In the literal movement grammar formalism, introduced by the author in [Gro95c], a nonterminal is annotated
with a number of terminal words. These termina words correspond to the linguistic notion of extraposed data,
that is, parts of a constituent which do not appear within the constituent itself. Hence as opposed to LCFRS,
literal movement grammars strictly distinguish a part of a sentence as a frame or backbone rel ative to which some
(smaller) constituents can be moved around.

Definition 3.1 (literal movement grammar) Let sets NV, T and u be given as for an LCFRS. Let V' be a set of
variable symbols digoint with N and 7.

o Atermt € (T'U V)* isany sequence of terminals and variables.

o A predicate ¢ isanontermina A with u(A) arguments, i.e. A(ty,...,t,4)) Wheret; areterms. A predicate
isnon-combinatorial if itisof theform A(z4, ..., z,). Wewrite 4 instead of A() for a predicate with zero
arguments.

¢ Anitemisone of thefollowing:

Aterminal a
Avariable z
A predicate ¢
A dashitem (¢/xz) wherez isavariable, and ¢ isapredicate

A literal movement grammar (LMG) isatupleG = (N, T, V, &, S, P),where S € N; u(S) = 0 and P isaset of
productions of the form

e SN PRERN P
where ¢ isapredicate, and ¥, - - - ¥,,, areitems.

WE USE the symbols r, z, y, z for variables, v, w for terminal words, s, ¢ for terms, ¢, ¢ for predicates, ¥, & for
items, and «, 3, v for sequences of items. Note that aterminal word isaterm; aterm is a sequence of items. The
empty sequence is denoted by A.

Definition 3.2 (semanticsof LMG) Aninstantiationof an LMG productionis obtained by substitutingaterminal

word for each variable occurring in the production; an LMG G recognizes aword w if S =%, w can be derived by
the following inference rules:2

¢ =%, & when ¢ — aisaningantiationof arulein G

6269y $==0v o S B W) v $=v o
G G
p=pBvy ¢=2057
ARBITRARY LMG can describe any r.e. language; hence we are usually interested in restricted formsof LMG. The

following restricted form has been shown (see proposition 4.11) to describe precisaly the class of polynomial time
recognisable languages.

2The definition here is a significant simplification of the one given in [Gro95c]. We usualy (e.g. in [Gro95d]) add an extra type of item
(= : @), called a colon item or restricted quantifier. According to the semantics given here it is equivalent to the sequence of two items
z (¢/x). The elimination of colon itemsin the formal definition implies that LM G derivations no longer contain variables. As we will see
further in this paper, slash items and the slash rule can a so be elimiated without loss of generative capacity, but this defeats the purpose of the
formalism (analysis of movement in natural language with a strict distinction between sentential frame, gaps and fillers) and requires a more
substantial transformation (proposition 4.8) of the grammar.

Definition 3.3 (smple) A literal movement grammar G = (N, T, u, S, P) issaid to be simplewhen al predicates
occurring on the RHS of productions R € P are non-combinatorial, and al productions

¢ — ¥, T,

are nonerasing, that is when an item ¥, on the right hand side refers to a variable z, viz. A(...,z,...),
A(...,z,..)/yor A(...)/=, then z either appearsin ¢ or ¥; = z for some ;.

E.g. theLMG rules

A(z,y) — B(zy) (B(zy) iscombinatorial)
A — B(z) C(z) (ziserased)

are not simple; but thefollowing ruleis:
A(zy,z) — (B(2)/y) v C(z,7)

Example 3.4 Thefollowingsimple LMG recognizesthelanguagea™b™c™; thestart symbol .S recognizes astring
w followed by R(w). R(w) recognizes astring b™c™ if and only if w = a™.

S — 1z R(z)
R(ay) — b R(y) c
R(}) — A

Example3.5 The following simple LMG recognizes the language a®”:

S — zz (S/2)
S — a

Example3.6 Let G; and G2 be (simple) literal movement grammars, and let £; and £- be the languages they
recognise. Let S; and Sz bethe start symbolsof the grammars. If we combinethe grammars S; and .Sz, add anew
start symbol S3; and therule

Sz — z (S1/z) (52/x)
then we obtain anew (simple) LMG G35 which recognises precisely the language £1 N L.

WE CONCLUDE this chapter with a grammar that generates the language of arbitrary numbers of copies from a
context-free language £, using the dlash feature:

Example3.7 Let £ be alanguage, and G = (N, T, S, P) be a context free grammar that describes it; then the
simpleliteral movement grammar

GI = (N U {E, Copy}, Ta {CC},,LL, Ev P U {RlaRZaRS})a
where u(Copy) = 1, u(A) = 0 otherwise, and the new productions Ry, Rz, R3 are

b)) — = Copy(z)
Copy(z) — =z Copy(z)
Copy(z) — (S/=)

generates the language {w™ | w € £, n > 0}.

4 Theframework: Concatenative Predicate Grammar

The previous sections already suggest a similarity between grammars in LCFRS, PMCFG and LMG, as some of
the presented examples and terminology coincide. We now formalize their relationship by developing a definite
clause style notation in which both LCFRS and LM G can be directly embedded.

Definition 4.1 (CPG) A concatenative predicate grammar (CPG) is a tuple G = (N, T,V, 4, S, P) where
N, T,V,pareasforan LMG, and u(S) = 1.

terms¢ and predicates ¢ are asfor LMG; We writeI", A for sequences of predicates.

A production R € P isof theform
¢ - Y1vaPm

where ¢, 91, . . ., ¥y are arbitrary predicates. When m = 0, we abbreviatetherule(¢ : - A) to
é.

An instantiation of a production R € P is obtained by substituting aterminal word for each of the variables
occurring in the production.

G recognizes astring w if F¢ S(w) where-¢ isdefined inductively as follows: if

A(wy, .., wyay) - Bl(v::ll:""7v/.];,(31)) Bm(v’l"‘,...,v;"(Bm))
isan instantiation of arulein P, then

I—GBl(v%,...,vllt(Bl)) oo FE By (v, ..

2 Vi) cpR
"G A(wl, ey wﬂ(A))

Note that as for LCFRS, m = 0 isthe base case (0 antecedents).

Remark 4.2 (CPG toLMG) Every CPG can beviewed asan LMG without slash items, by identifying each CPG
rule

¢ - Yiva-Pm
with the“identica” LMG rul€®
¢ — V1o P

A sequent HE' 4 in a CPG derivation corresponds to ¢ £ NintheLMG derivation; an application of the CPR
rule correspondsto applyingm LMR rulesin succession. GivenaCPG G = (N, T, V, i, S, P), we have aweakly
equivdentLMG G’ = (NU{X},T,V, 1/, Z, PUR)whereX isanew start symbol, and weadd onenew production
R:

Y — z S(z)
(' isthe similarity typethat agrees with . and assignsarity O to the new start symbol .) We now have -6’ S(w)
iff S(w) == Xiff & =2 w.

As IN the case of LMG, we can construct a CPG for any recursively enumerable language. Hence the following
set of restrictions.

Definition 4.3 (properties of CPG) LetG = (N, T, V, u, S, P) beaCPG, andlet R € P beoneof itsproductions:

Aty tuay) & - Bl(si,...,sllt(Bl)) Bm(s’f‘,...,sZ‘(Bm))
then

e R isbottom-uplinear* if no variable z appears more than onceinty, . o tu(a)-

3 CPG can be thought of as replacing the LM G notion of production by the (reversed) notion of implication—read ¢ : - T asT" = ¢. By
alowing only predicates on its RHS, the order of the items in a CPG production is no longer relevant, as was aready the case for the dash
itemsin an LMG production. Therefore the reader may feel inclined to succumb to the suggestive notation and think of I" as a set of predicates
rather than a sequence.

4The terms left-linear and right-linear are also in use here, but give rise to confusion as they are turned around w.r.t. the terminology for
LCFRS yield functions, moreover these terms are also used in an entirely different sense for brands of context free grammars and languages.
The choicefor the top-down/bottom-upjargon is motivated by the fact that is extends straightforwardly to properties of derivation trees.

R istop-down linear if no variable =z appears more than onceiin si, . “’SZL(B)

R isbottom-up nonerasing if each variable z occurring in an si also occursin at least one of thet,.

R istop-down nonerasing if each variable z occurring in one of the¢; aso appearsin one of the si.

e Risnon-combinatorial if each of the s}, consists of asinglevariable.
e Rissimpleif it isbottom-up nonerasing and non-combinatorial.

For all these properties, G hasthe property if and only if all R € P have the property.

CLEARLY, when a CPG issimple, the corresponding LM G according to remark 4.2 isalso simple. We now note a
few elementary relations between the other properties, and then relate CPG to the formalisms we discussed in the
previous sections.

Remark 4.4 (Bottom-up nonlinearity smulated by top-down nonlinearity)
A bottom-up nonlinear rule

can be replaced by the bottom-up linear, possibly top-down nonlinear rule (top-down nonlinear for z may occur in
" and hence more than once on the RHS)

A(---z--oy--):-T EqT(:c,y)

where we add the following |T'| + 1 productions for Eq, so that the grammar derives precisely Eq(w, w) for al
terminal wordsw:

EqT () N).
EqT(a:c, ay) - EqT(:c, y) forexchaeT

When a class of grammars allows top-down nonlinearity, it is hence also capable of representing bottom-up
nonlinear constructions; therefore when we are talking about bottom-up linear subclasses of CPG we will take this
to imply that the grammars are also top-down linear, and we will simply call those grammars (fully) linear.

Remark 4.5 (Erasingness) We can replace a top-down erasing production
A(--z--):-T

where z does not occur in T, by the top-down nonerasing rule
A(--rz--) - T Any(=)

where we have the following |T| + 1 top-down nonerasing productions for Any”, so that the grammar derives
Any™ (w) forany w € T*:

AnyT()\).
AnyT(a:c) D - AnyT(:c) foreacha e T

Hence top-down erasingness is irrelevant to the generative capacity of a class of grammars.

Proposition 4.6 (CPG and LCFRS) A simple, fully linear and nonerasing CPG is merely a (more compact!)
notational variant of an LCFRS.

ExAMPLE The CPG corresponding to example 2.3 is

S(zyz) - Az,y,2)
A(az,by,cz) - Az,v,2)
AN A N).

Proposition 4.7 (CPG and PMCFG) A non-combinatorial, top-down linear, top-down nonerasing CPG is a dif-
ferent notation for a PMCFG.

EXAMPLE The PMCFG for a2” from example 2.9 looks as followsin CPG notation:

S(zz) - S(z)
S(a).

WE HAVE adready seen that a CPG can be seen as an LMG. To prove that thereis alanguage-preserving trand ation
from (simple) LMG to (smple) CPG, we need to do some work.

Proposition 4.8 (CPG and LMG) For any (smple) LMG thereisaweakly equivalent (simple) CPG.

PROOF The idea is to move the yield of a predicate into an extra argument position; this is analoguous to the

translation of aDCG in phrase structure notation to a pure logic program. If G = (N, T, V, i, S, P) isa(simple)

LMG, then we construct a (simple) CPG G' = (N, T, V', i/, S, P') as follows. put '(4) = p(4) + 1, and let

V' =V U{z1,...,zm} where M isthelargest number of items on the right hand side of productionsin P.
Teke an LMG production A(tq, .. .,t,) — U1 %, --- ¥, in P. We construct a CPG rule as follows:

A(Sl"'sm,tl,...,tn) L- I‘lI‘gI‘m
where for each item ¥; inthe LMG rule, T'; is either one predicate or empty.

if¥, —a thenT; = A and s; = a
if¥, ==z thenT; =) ands; =z
if U, = B(z1,...,2zr) thenT; = B(z,z1,...,2x) and s; = z
if ¥, = B(z1,...,2r)/y thenT; = B(y,z1,...,2;) ands; = A

Clearly (cases 3, 4) if theLMG ruleis simple, then so will itstrandation.
By a straightforward inductive argument, we now see that for any terminal words vy, ..., v,, w and any
nonterminal A, we have

Aviy ..., vn) Low iff Alw,v1,...,0p).

A CONSEQUENCE of proposition4.8 isthat the slash itemsin the definition of LM G do not contribute to the formal
power of the formalism.

Example4.9 Let usillustrate this construction by trandating the grammar for a”b™c™ from example 3.4

S — 1z R(z)
R(ay) — b R(y) c
R(}) — A

The corresponding CPG is obtained by encoding the yield of the rules in an extra argument, as outlined in the
construction for proposition 4.8:

S(CCZz) L R(Zz, :c)
R(bzsc,ay) - R(z,y)
R()\).

Note that the resulting grammar is simple, fully linear and non-erasing and hence satisfies the requirements for
an LCFRS. It is a matter of taste whether one is to prefer the more compact LMG notation or the more formally
elegant CPG. There isno doubt that both of these are more attractive than the corresponding LCFRS (the reader
may wish to trandate the grammar into an LCFRS to see this). The difference between LMG and CPG is very
clear inthisexample: in LMG, part of the sentence isidentified as part of the surface form (b™c™ inthiscase), and
the rest of the sentence is thought of as subject to movement (the a’s); in CPG (and PMCFG/LCFRS) thereis no
such distinction. Aswe will show in the following section, there are some cases where the more informal LMG
notationis clearly preferable.

Example4.10 The trandation of the LMG for a?” from example 3.5 into CPG is exactly the same as the CPG
equivaent of the PMCFG (example 4.7).

Proposition 4.11 [Gro95g] The class of languages recognised by simple CPG is precisely the class PTIME of
languages recognisable in deterministic polynomial time.

SKETCH OF PROOFS The central observation isthat in a simple CPG derivation of a string w, we are only dealing
with substrings of w, and hence a recognition algorithm can encode the arguments of predicates with integers
ranging from 0 to n, where n isthe length of the input string w.

In [Gro954 we show that every simple CPG can be translated immediately into an equivalent ILFP formula
[Rou88], and ILFP isknown to describe precisely PTIME. Asto the converse, we can, again anal oguousto a proof
in[Rou88], simulate an arbitrary logspace-bounded alternating Turing machine (ATM) in terms of the recognition
problem for simple CPG. It isawell-known result [CK S81] that alternating log spaceis equivalent to deterministic
polynomial time.

5 Paradigm three. Attribute Grammar

This section serves to stress the idea that CPG is not only formally meaningful, but also often provides a more
practical notation, as we have aready seen for the case of LCFRS. We show how attribute grammars based on
strings and concatenation (SAG, [Eng86]), can be written down within CPG, resulting in what we think isa more
readable grammar. Unfortunately, the trandation does not shed light on the formal properties of the formalism;
athough the output set OUT (SAG) has been shown to be strictly inside PTIME, the resulting CPG grammars are
not smple.’

A string based attributegrammar (SAG) isacontext free grammar (N, T, S, P) with thefollowing additions: with
each nonterminal 4 € N we associate a two finite sets, INH(A4) of inherited attribute symbols and SYN(4) of
synthesized attribute symbols. For the start symbol S € N we demand that INH(.S) = @ and SYN(A) = d, where
d is some unique designated attribute symbol. Now with each production R € P:

A — woBiwi1By - - - W1 Brwn,
we associate a set of rules which define

¢ thevalueof thesynthesized attributesof 4, intermsof the valuesof itsinherited attributesand the synthesized
attributes of By, ..., B, through arbitrary concatenation (i.e. functionsidentical to the yield functions f
asinaPMCFG, definition 2.8).

o thevauesof theinherited attributesof By, . . ., By, intermsof theinherited attributesof A and the synthesized
attributesof By, ..., By, through arbitrary concatenation.

We usually require the dependencies between the attribute val ues to be acyclic.

An attribute grammar as defined here accepts preci sely the same sentences as its context-free backbone, but assigns
avalue to each sentence, i.e., the value of the designated attribute d after the evaluation of the attributes. The set
of these “output” valuesis caled OUT(SAG), and is studied in [Eng86].

Example5.1 [Eng86] We have two nonterminals: a start symbol Z with a designated attribute d; and A with an
inherited attribute : and a synthesized attribute s. The grammar and the attribute rules are as follows:

zZ — a A Zd:=As, Ar:=a

VA — b A Zd:=As, Ai:=Db

AM a4 AW 5= 4P) 5 AR) 5, AR) .= A 4 a
AM b AQ) AW 5= 4B 5 AR) s AP) .= AD b
A — A As:=Aic AicC

The context-free backbone recognizes arbitrary nonempty strings w over the alphabet T = {a, b}, and the output
valuefor w € T* is(wc)2™'. Hence OUT(SAG) isthelanguage {(wc)™ | w € {a,b}*, w # A, n = 2l¥I}.

50f course, as PTIME = simpleCPL, the existence of equivalent simple CPG is afact, but we don’t know what such a CPG will look
like.

Since the sets INH(A4) and SYN(A) are finite, without loss of generality we can take the attributes to be integer
numbers (i.e., we don’t need to give them names, an order is sufficient). It now followseasily that we can trandate
an attribute grammar into a CPG or an LMG, as we now illustrate:

Example5.2 The SAG from example 5.1 can be represented in LMG format as follows:®

Z(z) — a A(a; z)
Z(z) — b A(b;)
A(y; zz) — a A(va; z)
A(y; zz) — b A(yb; z)
A(z; zCzc) — A

Now thisisnot areal LMG, asit does not have a start symbol. By adding the following rule:
S —="(" Z(z)"," = ")"
we generate the language consisting of all tuples of wordsin 7™ and their values according to the SAG.

We can construct a corresponding CPG by adding an extra synthesized attribute that takes over the yield of the
context free backbone (in other words, every SAG is output equivalent to a SAG that recognizes only the empty
string).

S(z) - Z(z,y)
Z(z, az) - Aa; z, 2)
Z(z, bz) - A(b; z, 2)
A(y; oz, az) - A(ya; @, 2)
A(y; =z, bz) i- A(yb; =, 2)
A(z; zczc,).

Note that athough this grammar accepts precisely OUT(SAG), it is not bottom-up nonerasing (y on the RHS of
the S ruleis erased), soitisnot simple, and it seems of littleformal value. However, as in the case of LCFRS, the
CPG/LMG representation is (we think) a great improvement in readability. In this case, the LMG notation seems
preferable, as we can still easily recognize the context free backbone of the attribute grammar, which has been
“abstracted avay” in the CPG.

6 Classfication

We conclude this paper by summarizing how the formalisms discussed in sections 2 and 3 fit into a hierarchy
of CPG grammars satisfying increasing numbers of restricting properties from definition 4.3. All formalisms are
equivalent to some class of simple CPG (i.e. they arein PTIME). LCFRS are left and right linear, non-erasing;
they satisfy the constant-growth property. PMCFG are only right linear, and do not satisfy the constant growth
property (example 2.9). PMCFG are closed under arbitrary homomorphism, hence they cannot be closed under
intersection (otherwise they would describe any r.e. language, which isin contradiction with the fact that fixed
PMCFG recognitionis polynomial-time). Simple CPG subsume PMCFG, and are closed under intersection, hence
they are strictly stronger than PMCFG. Simple CPG is equivaent to simple LMG, and the class of languages
generated is precisely the class PTIME of languages recognisable in polynomial time.

Formalism Increasing conditionson CPG form Weakly equivalent to

Generic LMG — CPG, dl r.e. languages

SimpleLMG Bottom-up nonerasing, ILFR, PTIME
non-combinatorial

Nonerasing Top-down linear, Standard PMCFG

PMCFG top-down nonerasing

LCFRS Bottom-up linear MCFG, MC-TAG

HG Pairs only, restricted operations TAG, LIG, CCG

CFG Singletons —

8\We use a semicolon as opposed to a comma, to separate the inherited attributes (left) and the synthesized attributes (right). Thisisonly to

improvereadability; formally it should be read as acomma.

10

Although string-val ued attribute grammars can be represented in CPG form, and we think thisway of writing down
such grammars is more clear than traditional ways of writing down AGs, this currently serves just as an example
and has no formal consequences (moreover, the formalism does not seem to fit in this hierarchy).

Conclusions

We have outlined how litera movement grammars, and the more formal notation in the form of concatenative
predicate grammars, can be viewed as a straightforward extension of the more well-known linear context-free
rewriting systems. The simple CPG describe precisely the class PTIME. The definite clause style notation seems
preferable to the notation currently found in discussions of LCFRS and Head Grammars—because it is more
readable, and it sheds light on the way in which LCFRS and PMCFG relateto PTIME. This paper did not discuss
formalisms between r.e. and PTIME; however, boundedness conditionsa ong thelines of those for CLFP [Rou88]
can be stated for CPG, so as to obtain the classes EXPTIME and EXP-POLY TIME.

Further research

Aswe have reduced the differences between anumber of grammatica formalismsto parameters on the appearance
of one general formalism, a number of small problems such as the question whether LCFRS is precisaly the class
of mildly context-sensitive languages (e.g.: isthere any PMCFL that is constant growth but not an LCFRL) should
in the pleasant substitutional semantics of CPG be easier to address. Since simple CPG represents precisely the
tractable languages, it isworthwhileto investigate

1. the descriptive qualities of the formalism in a natural language context (typical examples of trans-mildly
context-sensitive fragments are e.g. the Chinese number names from [Rad91]).

2. thepossibility to add bounded information such as finite | attice-val ued features so as to obtain a comfortable
linguistical formalism without sacrificing tractability; it seems reasonable to believe that al sources of
“unboundedness’ in current festure-based formalisms are tightly connected to surface-structural unbounded
dependencies, and hence a feature extension of CPG may not require unbounded constructs to be fully
adequate.

3. prectical implementations for smple CPG recognition and, after a suitable definition, of CPG parsing.
These do not seem to be straightforward tasks, since the current proof is in terms of aternating Turing
machines which bear hardly any resemblance to everyday (deterministic) computing practice. Some variant
of generalized Earley recognitionisunder investigation.

4. the existence of tight polynomial bounds for subclasses of simple CPG in which the number of variables
used in productionsis bounded. Material along thislinesis found in [Rou88] and [KNSK92].
Acknowledgements

| would like to thank Jan van Eijck, Bill Rounds, David Weir, Erik Aarts and an anonymous referee for discussions
and comments on the LMG formalism and earlier versions of this paper. The author is supported by SION grant
612-317-420 of the Netherlands Organization for Scientific Research (NWO).

References

[CKS81] A.K.Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. JACM, 28:114-133, 1981.

[Eng86] Joost Engelfriet. The Complexity of Languages Generated by Attribute Grammars. SIAM J. Comput.,
15(1):70-86, 1986.

[Gro95a] Annius V. Groenink. An Elegant Grammatical Formalism for the Polynomial-time recognisable
Languages. Paper presented at the fourth Mathematics of Language workshop (MOL4), Univ. of
Pennsylvania, 1995.

11

[Gro95b]

[Gro95c]

[KNSK92]

[Per81]
[Pol84]

[Rad91]

[Rou8g]

[VSW94]

[Weigg]

Annius V. Groenink. Forma Mechanisms for Left Extraposition in Dutch. Paper presented at the
5th CLIN (Computational Linguistics In the Netherlands) meeting, November 1994. Submitted for
proceedings, 1995.

Annius V. Groenink. Litera Movement Grammars. In Proceedings of the 7th EACL Conference,
University College, Dublin, 1995.

Y. Kgji, R. Nakanishi, H. Seki, and T. Kasami. The Universal Recognition Problems for Perallel
Multiple Context-Free Grammars and for Their Subclasses. |EICE, E75-D(4):499-508, 1992.

Fernando Pereira. Extraposition Grammars. Computational Linguistics, 7(4):243-256, 1981.

Carl J. Pollard. Generalized Phrase Sructure Grammars, Head Grammars, and Natural Language.
PhD thesis, Standford University, 1984.

Daniel Radzinski. Chinese Number-Names, Tree Adjoining Languages, and Mild Context-Sensitivity.
Computational Linguistics, 17(3):277—-299, 1991.

William C. Rounds. LFP: A Logic for Linguistic Descriptions and an Analysis of its Complexity.
Computational Linguistics, 14(4):1-9, 1988.

K. Vijay-Shanker and D. J. Weir. The Equivalence of Four Extensions of Context-Free Grammar.
Math. Systems Theory, 27:511-546, 1994,

David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University
of Pennsylvania, 1988.

12

