
A Unifying Framework for Concatenation Based Grammar
Formalisms

Annius V. Groenink
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

avg@cwi.nl

September 21, 1995

Abstract

Linear Context Free Rewriting Systems (LCFRS, [Wei88]) are a general class of trans-context-free grammar
systems; it is the largest well-known class of mildly context sensitive grammar; languages recognized by LCFRS
strictly include those generated by the HG, TAG, LIG, CCG family. (Parallel) Multiple Context-Free Grammar
(PMCFG, [KNSK92]) is a straightforward extension of LCFRS. Literal Movement Grammars, introduced by the
author of this paper in [Gro95c], are a form of CFG augmented with inherited string-valued attributes. LCFRS,
PMCFG and LMG are primarily aimed at the analysis of natural language. String Attributed Grammars are
the concatenative variant of the attribute grammar formalism, which is widely used in programming language
semantics. The properties of the class of attribute output languagesOUT(SAG) are studied in [Eng86].

We present an attractive general purpose grammar formalism, concatenative predicate grammar, in which
all the mentioned formalisms can be represented. This results in both a more readable notation, and an elegant
hierarchical classification of the grammar formalisms.

1 Introduction

Literal Movement Grammars (LMG), introduced in [Gro95c], aim at the description of discontinuous constituency
and extraposition in natural languages, while maintaining some of the pleasant properties of context free grammars,
such as (polynomial) complexity of recognition, the applicability of Earley-based, left-to-right scanning parsing
strategies, and the fact that the appearance of an LMG is similar to that of a CFG. In [Gro95b] we show, by a
number of simple examples, that LMG is relatively adequate w.r.t. other well-known context sensitive formalisms
(head grammar or tree adjoining grammar [VSW94], extraposition grammar [Per81]) in the treatment of languages
such as Dutch, whose surface structure is essentially more involved than that of English.

This paper puts LMG in a familiar formal perspective by defining a notational variant, concatenative predicate
grammars or CPG, of the noncombinatorialLMG as defined in [Gro95c]. This variant emphasizes its relationship to
more well-known formalisms such as linear context-free rewriting systems (LCFRS, [Wei88]) and parallel multiple
context-free grammars (PMCFG, [KNSK92]). It turns out that CPG not only elegantly subsume the mentioned
formalisms, but also provide a simple characterization of the class of languages recognisable in deterministic
polynomial time. The latter is the subject of a separate paper [Gro95a].

After an introduction to LCFRS and LMG, we will define CPG and show how CPG is a generalization of
both formalisms. We then introduce string attributed grammar (SAG, [Eng86]) and show that it too fits into the
framework of CPG.

2 Paradigm one. Linear Context Free Rewriting Systems and Parallel
Multiple Context-Free Grammars

A linear context-free rewriting system (LCFRS, [Wei88]) is a context-free grammar in which each rule is augmented
with a linear, non-erasing function over tuples of terminal words. Instead of deriving a single terminal string, an
LCFRS derives tuples of terminal strings; an LCFRS derivation is a context free derivation where each node

1

is annotated with a function. The class of languages recognized by LCFRS is equal to that recognised by multi
component TAG (MCTAG), and is included in, but not equal to the class PTIME of languages that can be recognised
in polynomial time [Wei88].

Definition 2.1 (LCFRS) A linear context-free rewriting system (LCFRS) is a tuple (N; T; �; S; P) where N andT are sets of nonterminal symbols and terminal symbols respectively, N \ T = ;, S 2 N is the start symbol,� : N !N is the similarity type that assigns an arity to each nonterminal, �(S) = 1 and P is a set of productions
of the formA ! f(B1; : : : ; Bm)
where m � 0, A;B1; : : : ; Bm 2 N , and the yield function f is a linear, non-erasing function over tuples of
terminal words, that is, f : ((T �)�(B1); : : : ; (T �)�(Bm))! (T �)�(A) can be defined symbolically asf(hx11; : : : ; x1�(B1)i; : : : ; hxm1 ; : : : ; xm�(Bm)i) = ht1; : : : ; t�(A)i
where tk are strings over terminals and the variables xij, and each of the xij appears precisely once in t1; : : : ; t�(A).
Definition 2.2 (LCFRS derivation) An LCFRS G = (N; T; �; S; P) derives a terminal word w 2 T � if S G=)hwi where G=) is defined inductively, as follows: ifA! f(B1 ; : : : ; Bm)
is a production in P , thenB1 G=) hw11; : : : ; w1�(B1)i � � � Bm G=) hwm1 ; : : : ; wm�(Bm)iA G=) f(hw11 ; : : : ; w1�(B1)i; : : : ; hwm1 ; : : : ; wm�(Bm)i) CFR

Note that the base case ism = 0 (the rule then has 0 antecedents). The language recognized by an LCFRS is called
a linear context-free rewriting language (LCFRL).

Example 2.3 The following LCFRS generates the language anbncn.S ! e(A); e(hx; y; zi) = hxyziA ! f(A); f(hx; y; zi) = hax;by;cziA ! g(); g() = h�; �; �i
Remark 2.4 (Context Free Grammar) A CFG is an LCFRS, whose yield functions are limited to concatenation
over 1-tuples; a context-free ruleA ! B1 � � �Bm
is represented asA ! concatm(B1; : : : ; Bm); concatm(hw1i; : : : ; hwmi) = hw1 � � �wmi
and a terminal ruleC ! w
as C ! termw(); termw() = hwi
Example 2.5 (Copy Languages) By generating tuples containing multiple copies of the same string, we can
recognize k-copy languages over any context free languageL; e.g. to generate the 2-copy language fww j w 2 Lg
over a context-free language L, we replace the rules from the previous remark withA ! concatm2 (B1; : : : ; Bm);concatm2 (hv1; w1i; : : : ; hvm; wmi) = hv1 � � �vm; w1 � � �wmiC ! termw2 ();termw2 () = hw;wi

2

Since the resulting start symbol has arity 2, we need to wrap things up by adding a new start symbol � and the
following production:� !
atten2(S);
atten2(hw1; w2i) = hw1w2i
Remark 2.6 (Head Grammar) A bilinear head grammar is an LCFRS restricted to 2-tuples and three binary
functions; i.e. G = (N; T; �; S; P) where �(A) = 2 for S 6= A 2 N , and for each productionA! f(B1; B2), f
is one of the functions wrap, concatA or concatB wherewrap(hv1; v2i; hw1; w2i) = hv1w1; w2v2iconcatA(hv1; v2i; hw1; w2i) = hv1; v2w1w2iconcatB((hv1; v2i; hw1; w2i) = hv1v2w1; w2i
It is shown in [VSW94] that this formal counterpart of Pollard’s head grammars [Pol84] is weakly equivalent to
TAG, LIG and CCG. It is worth noting that this is still one of the weakest thinkable subclasses of linear context-free
rewriting systems stronger than CFG; opinions vary about the question whether such severely restricted formalisms
can be considered linguistically adequate. In [Gro95b] we argue that the TAG family is adequate for structural
descriptions of English but fails for any more than minimal fragment of structurally complex languages such as
Dutch and German.

Remark 2.7 (Constant Growth) It is easy to establish a very weak form of a pumping lemma, the constant growth
property, for LCFRS [Wei88]: for every LCFRL L there is an integer c0 and a set of constants C such that for
each word w 2 L whose length is greater than c0, there is another word w0 2 L such that for one of the constantsc 2 C, jw0j = jwj+ c.
Larger classes of grammars are obtained by relaxing the constraints of non-erasingness and linearity.

Definition 2.8 (MCFG, PMCFG) A multiple context-free grammar (MCFG) is as an LCFRS, but a yield functionf , defined as above:f(hx11; : : : ; x1�(B1)i; : : : ; hxm1 ; : : : ; xm�(Bm)i) = ht1; : : : ; t�(A)i
is only required to be linear: each of the xij appears at most once in the sequence of terms t1; : : : ; t�(A).
A parallel multiple context-free grammar [KNSK92] is as an LCFRS, but there are no restrictions to the yield
functions.

A KNOWN result is that for every MCFG, a weakly equivalent LCFRS can be constructed, hence LCFRL = MCFL.1
The same construction shows that a PMCFG can be made nonerasing. However, the following example of a
PMCFG that describes a non-constant growth language shows that PMCFG has a strictly larger weak generative
capacity than LCFRS and MCFG.

Example 2.9 The following PMCFG recognizes the language a2n (note that f is not linear and hence this is not
an LCFRS):S ! f(S); f(hxi) = hxxiS ! g(); g() = hai
Proposition 2.10 (homomorphisms) LCFRL and PMCFL are closed under arbitrary homomorphism.

PROOF Entirely straightforward. We replace all terminals in the grammar by their homomorphic images; every
derivation in the resulting grammar corresponds to one in the original grammar, and vice versa. The yield functions
are based on concatenation, and hence preserve homomorphic images.1However, it is shown in [KNSK92] that the non-erasingness condition is relevant to the time complexity of the problem of universal
recognition.

3

3 Paradigm two. Literal Movement Grammar

In the literal movement grammar formalism, introduced by the author in [Gro95c], a nonterminal is annotated
with a number of terminal words. These terminal words correspond to the linguistic notion of extraposed data,
that is, parts of a constituent which do not appear within the constituent itself. Hence as opposed to LCFRS,
literal movement grammars strictly distinguish a part of a sentence as a frame or backbone relative to which some
(smaller) constituents can be moved around.

Definition 3.1 (literal movement grammar) Let sets N; T and � be given as for an LCFRS. Let V be a set of
variable symbols disjoint withN and T .� A term t 2 (T [V)� is any sequence of terminals and variables.� A predicate � is a nonterminalAwith �(A) arguments, i.e. A(t1; : : : ; t�(A))where ti are terms. A predicate

is non-combinatorial if it is of the form A(x1; : : : ; xn). We write A instead of A() for a predicate with zero
arguments.� An item is one of the following:

A terminal a

A variable x
A predicate �
A slash item (�=x) where x is a variable, and � is a predicate

A literal movement grammar (LMG) is a tuple G = (N; T; V; �; S; P), where S 2 N ; �(S) = 0 and P is a set of
productions of the form�! 	1	2 � � �	m
where � is a predicate, and 	1 � � �	m are items.

WE USE the symbols r; x; y; z for variables, v; w for terminal words, s; t for terms, �; for predicates, 	;� for
items, and �; �;
 for sequences of items. Note that a terminal word is a term; a term is a sequence of items. The
empty sequence is denoted by �.

Definition 3.2 (semantics of LMG) An instantiation of an LMG production is obtained by substitutinga terminal

word for each variable occurring in the production; an LMG G recognizes a word w if S G=) w can be derived by
the following inference rules:2� G=) � when �! � is an instantiation of a rule in G� G=) �
 G=) v� G=) � v
 LMR

� G=) � (=v)
 G=) v� G=) �
 LMS

ARBITRARY LMG can describe any r.e. language; hence we are usually interested in restricted forms of LMG. The
following restricted form has been shown (see proposition 4.11) to describe precisely the class of polynomial time
recognisable languages.2The definition here is a significant simplification of the one given in [Gro95c]. We usually (e.g. in [Gro95c]) add an extra type of item(x : �), called a colon item or restricted quantifier. According to the semantics given here it is equivalent to the sequence of two itemsx (�=x). The elimination of colon items in the formal definition implies that LMG derivations no longer contain variables. As we will see
further in this paper, slash items and the slash rule can also be elimiated without loss of generative capacity, but this defeats the purpose of the
formalism (analysis of movement in natural language with a strict distinction between sentential frame, gaps and fillers) and requires a more
substantial transformation (proposition 4.8) of the grammar.

4

Definition 3.3 (simple) A literal movement grammar G = (N; T; �; S; P) is said to be simple when all predicates
occurring on the RHS of productionsR 2 P are non-combinatorial, and all productions� ! 	1	2 � � �	m
are nonerasing, that is when an item 	i on the right hand side refers to a variable x, viz. A(: : : ; x; : : :),A(: : : ; x; : : :)=y or A(: : :)=x, then x either appears in � or 	j = x for some j.
E.g. the LMG rulesA(x; y) ! B(xy) (B(xy) is combinatorial)A ! B(x) C(x) (x is erased)

are not simple; but the following rule is:A(xy; z)! (B(z)=y) r C(x; r)
Example 3.4 The following simple LMG recognizes the language anbncn; the start symbol S recognizes a stringw followed by R(w). R(w) recognizes a string bncn if and only if w = an.S ! x R(x)R(ay) ! b R(y) cR(�) ! �
Example 3.5 The following simple LMG recognizes the language a2n :S ! x x (S=x)S ! a

Example 3.6 Let G1 and G2 be (simple) literal movement grammars, and let L1 and L2 be the languages they
recognise. Let S1 and S2 be the start symbols of the grammars. If we combine the grammars S1 and S2, add a new
start symbol S3 and the ruleS3 ! x (S1=x) (S2=x)
then we obtain a new (simple) LMG G3 which recognises precisely the language L1 \L2.

WE CONCLUDE this chapter with a grammar that generates the language of arbitrary numbers of copies from a
context-free language L, using the slash feature:

Example 3.7 Let L be a language, and G = (N; T; S; P) be a context free grammar that describes it; then the
simple literal movement grammarG0 = (N [f�; Copyg; T; fxg; �; �; P [fR1; R2; R3g);
where �(Copy) = 1; �(A) = 0 otherwise, and the new productionsR1; R2; R3 are� ! x Copy(x)Copy(x) ! x Copy(x)Copy(x) ! (S=x)
generates the language fwn j w 2 L; n > 0g.

4 The framework: Concatenative Predicate Grammar

The previous sections already suggest a similarity between grammars in LCFRS, PMCFG and LMG, as some of
the presented examples and terminology coincide. We now formalize their relationship by developing a definite
clause style notation in which both LCFRS and LMG can be directly embedded.

Definition 4.1 (CPG) A concatenative predicate grammar (CPG) is a tuple G = (N; T; V; �; S; P) whereN; T; V; � are as for an LMG, and �(S) = 1.

5

� terms t and predicates � are as for LMG; We write �;� for sequences of predicates.� A productionR 2 P is of the form� :- 1 2 � � � m
where �; 1; : : : ; m are arbitrary predicates. When m = 0, we abbreviate the rule (� :- �) to�:� An instantiation of a productionR 2 P is obtained by substituting a terminal word for each of the variables
occurring in the production.� G recognizes a string w if `G S(w) where `G is defined inductively as follows: ifA(w1; : : : ; w�(A)) :- B1(v11 ; : : : ; v1�(B1)) � � � Bm(vm1 ; : : : ; vm�(Bm))
is an instantiation of a rule in P , then`G B1(v11 ; : : : ; v1�(B1)) � � � `G Bm(vm1 ; : : : ; vm�(Bm))`G A(w1; : : : ; w�(A)) CPR

Note that as for LCFRS, m = 0 is the base case (0 antecedents).

Remark 4.2 (CPG to LMG) Every CPG can be viewed as an LMG without slash items, by identifying each CPG
rule � :- 1 2 � � � m
with the “identical” LMG rule3� ! 1 2 � � � m:
A sequent `G0 � in a CPG derivation corresponds to � G=) � in the LMG derivation; an application of the CPR
rule corresponds to applyingm LMR rules in succession. Given a CPGG = (N; T; V; �; S; P), we have a weakly
equivalent LMGG0 = (N[f�g; T; V; �0;�; P[R)where� is a new start symbol, and we add one new productionR: � ! x S(x)
(�0 is the similarity type that agrees with � and assigns arity 0 to the new start symbol �.) We now have `G0 S(w)
iff S(w) G=) � iff � G=) w.

AS IN the case of LMG, we can construct a CPG for any recursively enumerable language. Hence the following
set of restrictions.

Definition 4.3 (properties of CPG) LetG = (N; T; V; �; S; P) be a CPG, and letR 2 P be one of its productions:A(t1; : : : ; t�(A)) :- B1(s11; : : : ; s1�(B1)) � � � Bm(sm1 ; : : : ; sm�(Bm))
then� R is bottom-up linear4 if no variable x appears more than once in t1; : : : ; t�(A).3CPG can be thought of as replacing the LMG notion of production by the (reversed) notion of implication—read � :- � as �) �. By
allowing only predicates on its RHS, the order of the items in a CPG production is no longer relevant, as was already the case for the slash
items in an LMG production. Therefore the reader may feel inclined to succumb to the suggestive notation and think of � as a set of predicates
rather than a sequence.4The terms left-linear and right-linear are also in use here, but give rise to confusion as they are turned around w.r.t. the terminology for
LCFRS yield functions; moreover these terms are also used in an entirely different sense for brands of context free grammars and languages.
The choice for the top-down/bottom-up jargon is motivated by the fact that is extends straightforwardly to properties of derivation trees.

6

� R is top-down linear if no variable x appears more than once in s11; : : : ; sm�(Bm).� R is bottom-up nonerasing if each variable x occurring in an sjk also occurs in at least one of the ti.� R is top-down nonerasing if each variable x occurring in one of the ti also appears in one of the sjk.� R is non-combinatorial if each of the sjk consists of a single variable.� R is simple if it is bottom-up nonerasing and non-combinatorial.

For all these properties, G has the property if and only if all R 2 P have the property.

CLEARLY, when a CPG is simple, the corresponding LMG according to remark 4.2 is also simple. We now note a
few elementary relations between the other properties, and then relate CPG to the formalisms we discussed in the
previous sections.

Remark 4.4 (Bottom-up nonlinearity simulated by top-down nonlinearity)
A bottom-up nonlinear ruleA(� � �x � � �x � � �) :- �
can be replaced by the bottom-up linear, possibly top-down nonlinear rule (top-down nonlinear for x may occur in� and hence more than once on the RHS)A(� � �x � � �y � � �) :- � EqT (x; y)
where we add the following jT j + 1 productions for Eq, so that the grammar derives precisely Eq(w;w) for all
terminal wordsw:EqT (�; �):EqT (ax;ay) :- EqT (x; y) for each a 2 T
When a class of grammars allows top-down nonlinearity, it is hence also capable of representing bottom-up
nonlinear constructions; therefore when we are talking about bottom-up linear subclasses of CPG we will take this
to imply that the grammars are also top-down linear, and we will simply call those grammars (fully) linear.

Remark 4.5 (Erasingness) We can replace a top-down erasing productionA(� � �x � � �) :- �
where x does not occur in �, by the top-down nonerasing ruleA(� � �x � � �) :- � Any(x)
where we have the following jT j + 1 top-down nonerasing productions for AnyT , so that the grammar derivesAnyT (w) for any w 2 T �:AnyT (�):AnyT (ax) :- AnyT (x) for each a 2 T
Hence top-down erasingness is irrelevant to the generative capacity of a class of grammars.

Proposition 4.6 (CPG and LCFRS) A simple, fully linear and nonerasing CPG is merely a (more compact!)
notational variant of an LCFRS.

EXAMPLE The CPG corresponding to example 2.3 isS(xyz) :- A(x; y; z)A(ax;by;cz) :- A(x; y; z)A(�; �; �):
7

Proposition 4.7 (CPG and PMCFG) A non-combinatorial, top-down linear, top-down nonerasing CPG is a dif-
ferent notation for a PMCFG.

EXAMPLE The PMCFG for a2n from example 2.9 looks as follows in CPG notation:S(xx) :- S(x)S(a):
WE HAVE already seen that a CPG can be seen as an LMG. To prove that there is a language-preserving translation
from (simple) LMG to (simple) CPG, we need to do some work.

Proposition 4.8 (CPG and LMG) For any (simple) LMG there is a weakly equivalent (simple) CPG.

PROOF The idea is to move the yield of a predicate into an extra argument position; this is analoguous to the
translation of a DCG in phrase structure notation to a pure logic program. If G = (N; T; V; �; S; P) is a (simple)
LMG, then we construct a (simple) CPG G0 = (N; T; V 0; �0; S; P 0) as follows: put �0(A) = �(A) + 1, and letV 0 = V [fz1; : : : ; zMg where M is the largest number of items on the right hand side of productions in P .

Take an LMG productionA(t1; : : : ; tn)! 	1	2 � � �	m in P . We construct a CPG rule as follows:A(s1 � � �sm; t1; : : : ; tn) :- �1�2 � � ��m
where for each item 	i in the LMG rule, �i is either one predicate or empty.if 	i = a then �i = � and si = aif 	i = x then �i = � and si = xif 	i = B(x1; : : : ; xk) then �i = B(zi; x1; : : : ; xk) and si = ziif 	i = B(x1; : : : ; xk)=y then �i = B(y; x1; : : : ; xk) and si = �
Clearly (cases 3, 4) if the LMG rule is simple, then so will its translation.

By a straightforward inductive argument, we now see that for any terminal words v1; : : : ; vn; w and any
nonterminal A, we haveA(v1; : : : ; vn) G=) w iff `G A(w; v1; : : : ; vn):
A CONSEQUENCE of proposition 4.8 is that the slash items in the definition of LMG do not contribute to the formal
power of the formalism.

Example 4.9 Let us illustrate this construction by translating the grammar for anbncn from example 3.4:S ! x R(x)R(ay) ! b R(y) cR(�) ! �
The corresponding CPG is obtained by encoding the yield of the rules in an extra argument, as outlined in the
construction for proposition 4.8:S(xz2) :- R(z2; x)R(bz2c;ay) :- R(z2; y)R(�; �):
Note that the resulting grammar is simple, fully linear and non-erasing and hence satisfies the requirements for
an LCFRS. It is a matter of taste whether one is to prefer the more compact LMG notation or the more formally
elegant CPG. There is no doubt that both of these are more attractive than the corresponding LCFRS (the reader
may wish to translate the grammar into an LCFRS to see this). The difference between LMG and CPG is very
clear in this example: in LMG, part of the sentence is identified as part of the surface form (bncn in this case), and
the rest of the sentence is thought of as subject to movement (the a’s); in CPG (and PMCFG/LCFRS) there is no
such distinction. As we will show in the following section, there are some cases where the more informal LMG
notation is clearly preferable.

Example 4.10 The translation of the LMG for a2n from example 3.5 into CPG is exactly the same as the CPG
equivalent of the PMCFG (example 4.7).

8

Proposition 4.11 [Gro95a] The class of languages recognised by simple CPG is precisely the class PTIME of
languages recognisable in deterministic polynomial time.

SKETCH OF PROOFS The central observation is that in a simple CPG derivation of a string w, we are only dealing
with substrings of w, and hence a recognition algorithm can encode the arguments of predicates with integers
ranging from 0 to n, where n is the length of the input string w.

In [Gro95a] we show that every simple CPG can be translated immediately into an equivalent ILFP formula
[Rou88], and ILFP is known to describe precisely PTIME. As to the converse, we can, again analoguous to a proof
in [Rou88], simulate an arbitrary logspace-bounded alternating Turing machine (ATM) in terms of the recognition
problem for simple CPG. It is a well-known result [CKS81] that alternating log space is equivalent to deterministic
polynomial time.

5 Paradigm three. Attribute Grammar

This section serves to stress the idea that CPG is not only formally meaningful, but also often provides a more
practical notation, as we have already seen for the case of LCFRS. We show how attribute grammars based on
strings and concatenation (SAG, [Eng86]), can be written down within CPG, resulting in what we think is a more
readable grammar. Unfortunately, the translation does not shed light on the formal properties of the formalism;
although the output set OUT(SAG) has been shown to be strictly inside PTIME, the resulting CPG grammars are
not simple.5
A string based attribute grammar (SAG) is a context free grammar (N; T; S; P)with the following additions: with
each nonterminal A 2 N we associate a two finite sets, INH(A) of inherited attribute symbols and SYN(A) of
synthesized attribute symbols. For the start symbol S 2 N we demand that INH(S) = ; and SYN(A) = d, whered is some unique designated attribute symbol. Now with each productionR 2 P :A! w0B1w1B2 � � �wm�1Bmwm
we associate a set of rules which define� the value of the synthesized attributes ofA, in terms of the values of its inherited attributes and the synthesized

attributes of B1, . . . , Bm, through arbitrary concatenation (i.e. functions identical to the yield functions f
as in a PMCFG, definition 2.8).� the values of the inherited attributes ofB1; : : : ; Bm in terms of the inherited attributes ofA and the synthesized
attributes of B1; : : : ; Bm through arbitrary concatenation.

We usually require the dependencies between the attribute values to be acyclic.

An attribute grammar as defined here accepts precisely the same sentences as its context-free backbone, but assigns
a value to each sentence, i.e., the value of the designated attribute d after the evaluation of the attributes. The set
of these “output” values is called OUT(SAG), and is studied in [Eng86].

Example 5.1 [Eng86] We have two nonterminals: a start symbol Z with a designated attribute d; and A with an
inherited attribute i and a synthesized attribute s. The grammar and the attribute rules are as follows:Z ! a A Z:d := A:s; A:i := aZ ! b A Z:d := A:s; A:i := bA(1) ! a A(2) A(1):s := A(2):s A(2):s; A(2):i := A(1):i; aA(1) ! b A(2) A(1):s := A(2):s A(2):s; A(2):i := A(1):i bA ! � A:s := A:i c A:i c
The context-free backbone recognizes arbitrary nonempty stringsw over the alphabet T = fa;bg, and the output
value for w 2 T � is (wc)2jwj

. Hence OUT(SAG) is the language f(wc)n j w 2 fa;bg�; w 6= �; n = 2jwjg.5Of course, as PTIME = simpleCPL, the existence of equivalent simple CPG is a fact, but we don’t know what such a CPG will look
like.

9

Since the sets INH(A) and SYN(A) are finite, without loss of generality we can take the attributes to be integer
numbers (i.e., we don’t need to give them names, an order is sufficient). It now follows easily that we can translate
an attribute grammar into a CPG or an LMG, as we now illustrate:

Example 5.2 The SAG from example 5.1 can be represented in LMG format as follows:6Z(x) ! a A(a; x)Z(x) ! b A(b; x)A(y; xx) ! a A(ya; x)A(y; xx) ! b A(yb; x)A(x; xcxc) ! �
Now this is not a real LMG, as it does not have a start symbol. By adding the following rule:S ! "(" Z(x) "," x ")"

we generate the language consisting of all tuples of words in T � and their values according to the SAG.

We can construct a corresponding CPG by adding an extra synthesized attribute that takes over the yield of the
context free backbone (in other words, every SAG is output equivalent to a SAG that recognizes only the empty
string).S(x) :- Z(x; y)Z(x; az) :- A(a; x; z)Z(x; bz) :- A(b; x; z)A(y; xx; az) :- A(ya; x; z)A(y; xx; bz) :- A(yb; x; z)A(x; xcxc; �):
Note that although this grammar accepts precisely OUT(SAG), it is not bottom-up nonerasing (y on the RHS of
the S rule is erased), so it is not simple, and it seems of little formal value. However, as in the case of LCFRS, the
CPG/LMG representation is (we think) a great improvement in readability. In this case, the LMG notation seems
preferable, as we can still easily recognize the context free backbone of the attribute grammar, which has been
“abstracted away” in the CPG.

6 Classification

We conclude this paper by summarizing how the formalisms discussed in sections 2 and 3 fit into a hierarchy
of CPG grammars satisfying increasing numbers of restricting properties from definition 4.3. All formalisms are
equivalent to some class of simple CPG (i.e. they are in PTIME). LCFRS are left and right linear, non-erasing;
they satisfy the constant-growth property. PMCFG are only right linear, and do not satisfy the constant growth
property (example 2.9). PMCFG are closed under arbitrary homomorphism, hence they cannot be closed under
intersection (otherwise they would describe any r.e. language, which is in contradiction with the fact that fixed
PMCFG recognition is polynomial-time). Simple CPG subsume PMCFG, and are closed under intersection, hence
they are strictly stronger than PMCFG. Simple CPG is equivalent to simple LMG, and the class of languages
generated is precisely the class PTIME of languages recognisable in polynomial time.

Formalism Increasing conditions on CPG form Weakly equivalent to
Generic LMG — CPG, all r.e. languages
Simple LMG Bottom-up nonerasing,

non-combinatorial
ILFP, PTIME

Nonerasing
PMCFG

Top-down linear,
top-down nonerasing

Standard PMCFG

LCFRS Bottom-up linear MCFG, MC-TAG
HG Pairs only, restricted operations TAG, LIG, CCG
CFG Singletons —6We use a semicolon as opposed to a comma, to separate the inherited attributes (left) and the synthesized attributes (right). This is only to

improve readability; formally it should be read as a comma.

10

Although string-valued attribute grammars can be represented in CPG form, and we think this way of writing down
such grammars is more clear than traditional ways of writing down AGs, this currently serves just as an example
and has no formal consequences (moreover, the formalism does not seem to fit in this hierarchy).

Conclusions

We have outlined how literal movement grammars, and the more formal notation in the form of concatenative
predicate grammars, can be viewed as a straightforward extension of the more well-known linear context-free
rewriting systems. The simple CPG describe precisely the class PTIME. The definite clause style notation seems
preferable to the notation currently found in discussions of LCFRS and Head Grammars—because it is more
readable, and it sheds light on the way in which LCFRS and PMCFG relate to PTIME. This paper did not discuss
formalisms between r.e. and PTIME; however, boundedness conditions along the lines of those for CLFP [Rou88]
can be stated for CPG, so as to obtain the classes EXPTIME and EXP-POLYTIME.

Further research

As we have reduced the differences between a number of grammatical formalisms to parameters on the appearance
of one general formalism, a number of small problems such as the question whether LCFRS is precisely the class
of mildly context-sensitive languages (e.g.: is there any PMCFL that is constant growth but not an LCFRL) should
in the pleasant substitutional semantics of CPG be easier to address. Since simple CPG represents precisely the
tractable languages, it is worthwhile to investigate

1. the descriptive qualities of the formalism in a natural language context (typical examples of trans-mildly
context-sensitive fragments are e.g. the Chinese number names from [Rad91]).

2. the possibility to add bounded information such as finite lattice-valued features so as to obtain a comfortable
linguistical formalism without sacrificing tractability; it seems reasonable to believe that all sources of
“unboundedness” in current feature-based formalisms are tightly connected to surface-structural unbounded
dependencies, and hence a feature extension of CPG may not require unbounded constructs to be fully
adequate.

3. practical implementations for simple CPG recognition and, after a suitable definition, of CPG parsing.
These do not seem to be straightforward tasks, since the current proof is in terms of alternating Turing
machines which bear hardly any resemblance to everyday (deterministic) computing practice. Some variant
of generalized Earley recognition is under investigation.

4. the existence of tight polynomial bounds for subclasses of simple CPG in which the number of variables
used in productions is bounded. Material along this lines is found in [Rou88] and [KNSK92].

Acknowledgements

I would like to thank Jan van Eijck, Bill Rounds, David Weir, Erik Aarts and an anonymous referee for discussions
and comments on the LMG formalism and earlier versions of this paper. The author is supported by SION grant
612-317-420 of the Netherlands Organization for Scientific Research (NWO).

References

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. JACM, 28:114–133, 1981.

[Eng86] Joost Engelfriet. The Complexity of Languages Generated by Attribute Grammars. SIAM J. Comput.,
15(1):70–86, 1986.

[Gro95a] Annius V. Groenink. An Elegant Grammatical Formalism for the Polynomial-time recognisable
Languages. Paper presented at the fourth Mathematics of Language workshop (MOL4), Univ. of
Pennsylvania, 1995.

11

[Gro95b] Annius V. Groenink. Formal Mechanisms for Left Extraposition in Dutch. Paper presented at the
5th CLIN (Computational Linguistics In the Netherlands) meeting, November 1994. Submitted for
proceedings, 1995.

[Gro95c] Annius V. Groenink. Literal Movement Grammars. In Proceedings of the 7th EACL Conference,
University College, Dublin, 1995.

[KNSK92] Y. Kaji, R. Nakanishi, H. Seki, and T. Kasami. The Universal Recognition Problems for Parallel
Multiple Context-Free Grammars and for Their Subclasses. IEICE, E75-D(4):499–508, 1992.

[Per81] Fernando Pereira. Extraposition Grammars. Computational Linguistics, 7(4):243–256, 1981.

[Pol84] Carl J. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and Natural Language.
PhD thesis, Standford University, 1984.

[Rad91] Daniel Radzinski. Chinese Number-Names, Tree Adjoining Languages, and Mild Context-Sensitivity.
Computational Linguistics, 17(3):277–299, 1991.

[Rou88] William C. Rounds. LFP: A Logic for Linguistic Descriptions and an Analysis of its Complexity.
Computational Linguistics, 14(4):1–9, 1988.

[VSW94] K. Vijay-Shanker and D. J. Weir. The Equivalence of Four Extensions of Context-Free Grammar.
Math. Systems Theory, 27:511–546, 1994.

[Wei88] David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University
of Pennsylvania, 1988.

12

